initial 1st iteration 2nd iteration 3rd iteration

gl | [L=5]0L<220] | [L>35-6C]JL< [L>35-6C][L<220] | [L>65-6C]C[L<
(JC<5] 2201 C<5] C[C<5] 220]C[C<5]

gl' [ [L=5]]L<220] | [L=5]L<220] [L>35]L<220] [L>35][L<220]
O C=5] C=5] C[C=5] C=5]

02 | [L=5]]L<220] | [L>35-6C]JL< [L>35-6C][L<220] | [L>45-6C]C[L<
(JC<5] 2201 C<5] C[C<5] 220]C[C<5]

02" [ [L=5]0]L<220] | [L=5]L<220] [L>35]L<220] [L>35]L<220]
C=5] JC=5] C[C=5] C=5]

g3 | [L=5]JL=<220] | [L>15-2C]O [L>15-2C]C [L>25-2C]C
(JC<5] [L<200+4C]JC<5] | [L<200+4C]JC<5] | [L<200+4C]JC<5]

g3' [ [L=5]0[L<220] | [L=5]L<220] [L>15]L<220] [L>15]0L<220]
C=5] JC=5] C[C=5] C=5]

g4 | [L=5]0L<220] | [L>35-6C]JL< [L>35-6C][L<220] | [L>35-6C]C[L<
(JC<5] 22010 C<5] C[C<5] 220][C<5]

g5 | [L=5]0L<220] | [L>15-2C]C [L>15-2C]C [L>15-2C]C
(JC<5] [L<200+4C]JC<5] | [L<200+4C][C<5] | [L<200+4C]JC<5]

g6 | [L=5][L<220] | [L=5]L<180+8C] | [L=5]L<180+8C] | [L=5]L<180+8C]
C<5] JC<5] C[C<5] JC<5]

g6' | [L=5]0[L<220] | [L=5][L<220] [L=5]JL<220] [L=5]OL=<220]
C=5] C=5] C[C=5] C=5]

Table 1: Steam Boiler Controller Synthesis
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It can be calculated that

(4%, [C>5], 45)
(Tonin ([C>B] A [L > 180]) > Tinae ([L < 5]V [L > 220] V [C < 5]))
(maz{0, (180 — L)/8} > min{co, (220 — L)/2,0})

((180 — L/8 > 0)
[
(
(

3
S

L < 180]

%' [L < 5], < illegal >) = true
e(¢®, [L > 220, < illegal >) = true
p(q®  stop2,¢*) = [L > 5] A [L < 220]

I

Therefore q6l will not be split and event stop_2 will be forced under the condition

critical(quf) A wp(q6l, stop_2, q?’l)
/\—|(pc(q6l, [C>5],¢5) /\pc(q6l, [L < 5], < illegal >) /\pc(q6l, [L > 220], < illegal >))
=([L <5B]VI[L>220]V[C <5B])A[L > 180] A [L > 5] A[L < 220].

Since [C' < 5],[L > 5],[L < 220] are satisfied at ¢% the forcing will actually

take place when [L > 180].
Table 1 summarizes the results of the synthesize algorithm at each iteration.
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8 Appendix C: Synthesis of Steam Boiler Con-
troller

We will only illustrate how the algorithm performs on ¢° and q6l, where

I = [L>5]A[L < 220) A [C < 5],
Lo =[L>5A[L'< 2200 A[C > 5.

By our algorithm,
wp(q®, stop2,¢%) = [L > 5] A [L < 220].

Therefore, q6l will not be split. On the other hand, ¢° will be split as follows
(note that at ¢s, L € [2,8]).

C

=3

(¢°, [L > 220], < illegal >)

( mm([L > 220]) > Trnae ([L < 5] V[L > 220] V [C > 5]))
((220 — L)/8 > min{oo, (220 — L)/8,5 — C'})

((220 = L)/8 > (5= ()

(L < 180 4 8C)

Similarly,

(q [L < 5], < illegal >)

(Tinin ([L < 5]) > Trnae ([L < 5]V [L > 220]V [C > 5]))
(oo

tru

3
S

Tonae([L < 5] V[L > 2201V [C >5])

Therefore, ¢% will be split into ¢® and ¢5 with invariants

Iys = 1Igs Npe c(¢% [L > 220], < illegal >) A pe(q®, [L < 5], < illegal >)
=[L>5]A[L <220]A[C < B]A[L < 180 4 8C]
=[L>5]A[C <B]A[L < 180+ 8C],

Is =[L>5]A[L <220]A[C <5]A[L > 180+ 8C].

In the next iteration, q6l will be analyzed as follows. There are five transitions
leaving ¢%':

(¢%,[C>5),47)
(¢°,[C>5], ¢5)

(¢%,[L < 5], < illegal >)
(q6l, [L > 220], < dllegal >)
(

i

¢ stop2,¢%").

22



7 Appendix B: Proof of Theorem 1

Since Algorithm 1 terminates in a finite number of steps and no sequence of
instantaneous transitions form a loop, the controller is well defined. In particu-
lar, time progresses as execution continues and during any finite interval of time
only a finite number of transitions take place. ~

To prove part 1, it is sufficient to show that an execution in CH M ||C|| D will
only visit configurations in

RICQ— Q.
If this is not the case, then there exists an execution

e1,t1 €n,ln

t
qo —> q1 — ...—qn—-1 — qn

such that 90,9155 qn-1 € Qc but dn ¢ Qc'

Let us consider the transition from ¢,_1 to ¢,. It cannot be an event tran-
sition because such illegal event transitions are not permitted by C. If it is
a dynamic transition, then since 1t is not preempted at ¢,_1, it implies that
qn-1 &€ Q°, a contradiction.

To prove part 2, let us assume that

e1,t1 €n,tan
o —> q1 —> -..—2qn—1 — {n
is a possible execution of CHM||D but the last transition from g,_1 to ¢, is

impossible in C’HM||C’||D, that is, ¢, € Q°. Then by our construction of ¢,,
there exists a continuation of the execution in CHM||D

€nt1,tnt1
n —  qp41 —> oo ni+m

that will lead to an illegal configuration ¢,4m € Q. This execution cannot be
prevented by D, a contradiction to the hypothesis that D is legal.
On the other hand, if

e1,t1 €n,tan
qo —> q1 — ...—qn—-1 — qn

is a possible execution of C HM||C||D but the last transition from g,_ to g, is
impossible in C'H M || D, then this last transition must be triggered by a dynamic
transition in C' when the following guard becomes true:

Ge = eritical(lq,_,) Nwp(gn-1,2,9n) N (7(A(guoy,G.q") DTy (quor,BC)P(Gn—1, G, 7))

Since the transition (¢,-1G., ¢n) does not take place in CHM]||D, by our con-
struction of (., the next transition

[ ’

In-1 —> n

could lead to ¢/, ¢ Q°. By the same argument as above, we conclude that D is
illegal, a contradiction.
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6 Appendix A: Formulas for T, (true(P)) and
Tnaz (true(P))
We begin by considering an atomic formula
P:(SZ' > CZ)

Suppose that at a given instant ¢ at which S;(¢) = S;, P is false; that is, S;<C;.
Then the interval of time that will elapse before P can become true is bounded
by the minimum value

(CZ' — SZ')/TZ'U if m'U >0

o0 otherwise,

Tnin (true(P)) = {
and the maximum value

Tinaz (true(P)) = { (C; = Si)/m™ it >0

o0 otherwise,

where, as before, r;* and ;¥ are the lower and upper bounds of §, respectively.

If, at the instant ¢, P is true, then clearly Tpnn (true(P)) = Thax (true(P)) =
0.

Similarly, if P is given by
P:(SZ' < CZ'),

then if, at the instant ¢, P is true, Tin(true(P)) = Tmaz (true(P)) = 0, and
otherwise, the minimum interval is

Tmm(true(P)) = { (Ci o Si)/riL it L <0

o0 otherwise,

and the maximum interval is

Tinaz (true(P)) = { (C; = Si)/mY ifr¥ <0

o} otherwise.

For conjunction of two predicates, P = PyAPs, it is clear that
Tnin (true(P)) = max{Tmin (true(P1)), Tmin(true(P2))}
Tinaz (true(P)) = max{Tnas (true(P1)), Tmaz (true(Pa))},

and for disjunction of two predicates, P = P,V P,
Tnin (true(P)) = min{ T (true(Py)), Tinin (true(Pa))}
Tinaz (true(P)) = min{ Tz (true(Pr)), Tmar (true(Pz))}.

Also, if a predicate is always false: P = false, then Ty (true(P)) = Thar (true(P)) =
0.
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Figure 3: Steam Boiler Controller
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Without changing the nature of the problem but to avoid nondeterminism in
the controller, we shall assume that Pump 1 will be turned on before Pump 2
can be turned on; and Pump 1 cannot be turned off before Pump 2 is turned
off.

Thus, the configurations of the CHM to be controlled can be denoted by the
legal configurations

gt =< of f1,0f f2, normal >, q% =< starting, of f», normal >,
¢ =< oni,of fo, normal >, g =< starting,, startings, normal >,
q® =< ony, startings, normal >, ¢% =< ony,ons, normal >,

and illegal configurations where normal ([L > 5] A [L < 220]) is replaced by
high ([L > 220]), or low ([L < 5]). That is,

Qp =< high > U <low > .

Because of the delays in turning the pumps on and the delays caused by
sampling, there are configurations in < normal > from which unavoidable dy-
namic transitions may lead to illegal configurations in ;. Therefore, we must
partition < normal > properly using the synthesis algorithm.

Before applying the algorithm, we first replace the guarded event transitions
by dynamic and event transitions. Also note that since C; = C's = (' whenever
they are not equal to 0 or 5, only one clock is sufficient (to be denoted by C).
Thus, the equivalent CHM is shown in Figure 2, where, for clarity, the illegal
configurations are not drawn.

Using the synthesis algorithm (see Appendix C), the minimally restrictive
controller is synthesized and shown in Figure 3.
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Figure 1: Steam Boiler System
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Theorem 1 If Algorithm 1 terminates in a finite number of steps and no se-
quence of instantaneous transitions forms a loop, then the controller synthesized
1s the minimally restrictive legal controller in the following sense.

1. For any controller D, an execution in C HM/||C||D will never visit illegal
configurations Q.

2. For any legal controller D, an execution is possible in CHMI|D if and
only if it is possible in CHMI||C||D.

5 Steam Boiler Example

In this section, we shall illustrate application of the control synthesis algorithm
developed in the previous section by synthesizing a controller for the familiar
steam boiler example that was proposed in [1] as a benchmark problem for
modeling and verification of hybrid systems (see also e.g. [10] [8]). This example
was proposed as a benchmark problem because it has many essential properties
that are found in some commonly used industrial processes, such as chemical
reactors, oil refineries, etc.

We use a simplified model of the steam boiler described in [1]. Some param-
eters are set at the same values as in [10]. This simplified model captures the
essence of the control problem addressed in this paper.

The steam boiler consists of a water tank (boiler) equipped with two pumps
(instead of four pumps as in [1]). FEach pump can supply water to the boiler
at the rate of 4 liter/sec. The pump can be switched on (event start_i) and off
(event stop_i) by a controller. Due to the fact that the pump cannot balance
the presure inside the boiler instantaneously, there is a five-second delay before
water starts pouring into the boiler after the pump is switched on.

Steam is generated by an unmodeled mechanism. The rate at which steam
is generated is therefore nondeterministic. But we do know that the rate is
bounded between 0 liter/sec. and 6 liter/sec.

The control objective is to maintain the water level L in the boiler between
the minimal level of 5 liters and the maximal level of 220 liters. This is achieved
by turning the two pumps on and off. Since we are interested in synthesizing
the minimally restrictive controller, our controller will accept (that is, permit)
all behaviors (turning pumps on and off) that do not imply possible violation
of the level constraints and will intervene by forcing the pumps (on or off) only
whenever it is absolutely necessary to do so in order to guarantee constraint
satisfaction.

The controller can sample the water level in the boiler only every five seconds.
Since this implies sampled decision making, there is no loss in generality in
assuming that control (turning the pumps on and off) can only be applied at
the sampling instants.

In summary, the steam boiler to be controlled is modeled by the CHM in
Figure 1.

As stated above, the parameters are given by

Pi=4, Py=4, Vi =0, Vg=6, L. =5, Lg=220.
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Initialization
1. Set of bad configurations BC' := Qy;
2. Set of pending configurations PC = @ — Qs;
3. New set of pending configurations N PC := {);

4. For each ¢qePC set its configuration origin as CO(g) = ¢;
Iteration

b Foral qge PC do

Ly = 1Ig N((MNg,6.9)enT(q,B0)P(e, G, ) V
Ly = Ig N(~(Ag.6.0)eD1(q,80)P(¢, G, 1))

f 1, # false, then
NPC :=NPCU{q}; CO(q1) :=CO(q);
1y, # false, then
BC := BC U {¢z2};

(Vg.2.0)eET,(q,BC)wP(4, 0, 4")));
A =(Vigo.aeET, (0,80 WP, 0, q'))); -

6. If PC=NPC, goto 8.
7. Set
PC:=NPC; NPC :={;
Go to 5;
Construction of C
8. Define vertices, events and dynamics:
Q°:=PC; X =XU{s:0ceX}; D=0
9. Define transitions:

E°¢:= {(q,critical(Iy) Nwp(q, o (

q') A
4,4'€Q°N(CO(q),2,CO(q )) €EEY;
B¢ = EU{(q,wplq,a,¢) N —7,q

_I

\_/\_,,_/

14, 4'€Q°NCO(q),a,CO(¢"))eEY;
10. End.

Therefore, the controller (' has no dynamics. Its vertices are copies of the
legal configurations of CHM that survive after the partition. Its events in-
clude the output-events & and the input-events & from the environment or other
controllers. Tts transitions are of two types: (1) dynamic transitions that are
triggered when the CHM is about to become potentially illegal; and (2) guarded
event transitions that are triggered by input-events.

Another controller D) can be embeded into C' as follows. First, all the output-
events @ in D are replaced by & to obtain D. Then the embeded control system
is given by

CHM]||C||D.

We can now prove the following
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be satisfied. Therefore, we will split the configuration ¢ into two sub-configurations
q1 and g2, by partitioning the invariant [, as

Ly = Iy Apelq, G, ')
I, =1, N—pelq, G, q').
Clearly, the dynamics of and the transitions leaving and entering the configura-
tions ¢; and ¢g are the same as for ¢, except that the transition (¢1, G, ¢’) is now
impossible.
If there are more than one illegal dynamic transition at ¢, then we will split
q into ¢q1 and ¢ as follows.

gy = Iy N (N q,6,0)€DTh(0,Q0)PC(4; G, q')}
Iy, = Ig A=(Ng,Gae DTy (0,00)PC(0, G, 4')).

General case.

That is, we require neither ET,(¢,Qs) = @ nor DTy(q,Qs) = . In this
general case, we can either rely on legal dynamic transitions to preempt the
illegal dynamic transitions, or if this does not happen, force some legal event
transitions. Therefore, we shall split ¢ into ¢; and g2 as follows. ©

Iql = Iq A ((/\(q,G,q’)EDTb(qub)pc(Qa G, (]/)2 N ( (¢,9,9 )EET (g, Qb)wp(q’ 9,9 )))/
qu = Iq A (_'(/\(quyq’)EDTb(q,Qb)pc(q’ G,q )) (\/ EET,(q, Qb)wp(q’—’ q )))

The condition under which a legal event transition (¢, o, q’) needs to be forced
is now given by’

critical(ly,) A wp(g, 2,4") A (2(A(q,6.9)eDT0(0,Q0)Pe(4, G 4')))-
Note that if we adopt the convention that

Nq,G,qa)eDTy(q,Q5)PC(0, G, q') = true l:f DTy(q,Qs) =0
V(g,0.4)€ET,(q,Qs)WP(q, @, ¢') = false if ETy(q,Qs) =0,

then this general case covers all the cases above, including the case when DTy (q, Q) =
0.

From the above discussions, we can now formally describe our synthesis al-
gorithm.

Algorithm 1 (Control Synthesis)
Input

e The model of the system CHM = (Q, X2, D, I, E, (qo, %0)).
o The sel of illegal configurations Qp C Q.

Output
o The controller C' = (Q°,X°, D I°, E° (4§, 7).

8If (¢, G, q') € DTy(gq, Qp) cannot be prevented from occuring, then we must consider g as
illegal. In that case Iy, = false and Iy, = I.

"There is a possible complication if the newly defined guards form an instantaneous loop
of consecutive transitions. If this occurs, further analysis will be required.

12



The condition under which the transition (¢, o, ¢') will be forced is then
eritical(Iy,) = eritical (I A wp(q, o, ¢')).

If there are more than one legal event transition in ET(q, Q), then we will
split ¢ into ¢; and ¢s as follows.

gy = Ig N (Vigo.0)eBT4(0,Q0) P4, O, q')}
Ly = Ig A= (Vig0.9)€BT4(0,00)wP(4, T, ¢'))-

The condition under which a legal event transition (¢, ¢, ¢’) needs to be forced
is given by

eritical(I,) Awp(q, o, ¢').

Case 2. ET,(q,Qs) =0

Since ET4(q,Qy) = 0, the transitions in DT} (q, Qs) will be prevented from
taking place, only if they are either preempted by some dynamic transitions in
DT, (b, Q») or will never take place due to the dynamics at g.

Note that becaus of configuration splitting, the target configuration of a
dynamic transition guarded by a guard (G, may depend on the dynamic condition
at the source configuration at the instant when G becomes true. Thus, if the
configuration ¢’ is split into ¢} and ¢}, then we may have either (¢,G,q}) €
DTy(q,Qp) or (¢,G, ¢4) € DT (¢, Qp) depending on the dynamic conditions. To
deal with such cases effectively, it will be convenient to modify (¢, G, ¢') by the
following equivalent dynamic transition

(¢, G Awplq, G, q"),q")

where wp(q, G, ¢') is the weakest precondition under which the transition (¢, G, ¢')
will not violate the invariant I, upon entry to ¢'. wp(q, G, ¢’) is calculated in
the same way as wp(q, o, ¢').

To find the condition under which a dynamic transition (¢, G, ¢') € DTy(q, Qs)
will be preempted by another dynamic transition (i.e., (¢, G,¢’) will not take
place), let us consider first the time at which a predicate will become true. The
interval of time that will elapse before P can become true is bounded by the
minimum value T,y ((rue(P)) and the maximum value Ty, (true(P)). They
can be calculated using formulas in Appendix A.

Now, the dynamic transition (¢,G, ¢') € DTy(g,Qp) will be preempted by
another dynamic transition, provided I, the invariant of ¢, becomes false before
G A wp(q,G,q') becomes true. The earliest time G A wp(q, G, ¢') will become
true is Thin (G Awp(q, G, ¢')) and the latest time I, will become false is given by
Tnaw (false(ly)) = Thaw(true(—1y)). It is clear that to ensure that the transition
(¢,G,q') will not take place, it must be required that the following preemptive
condition®

pe(q, Gy q') = (Tnin (true(G Awp(q, G, ")) > Tnae (false(1y)))

5We take the convention that if Tynir (true(G Awp(q, G, q'))) = co, then pe(q, G, q') = true
even if Traz(false(ly)) = co.
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ET,(¢q,Qs), provided this set is nonempty, thereby forcing the CHM from ¢ to
q'. However, such a transition may be legally triggered only if the invariant
I, is satisfied upon entry to ¢’. (Notice that if ¢/ is the legal subconfiguration
of a configuration whose invariant has been split to a legal part and an illegal
part, satisfaction of the invariant I, is not automatically guaranteed when o
is triggered.) Thus, let us define wp(q, o, ¢’) to be the weakest precondition
under which the transition (¢, g, ¢') will not violate the invariant I,» upon entry
to ¢’. Since some of the shared variables that appear in I are possibly (re-
)initialized upon entering ¢', the condition wp(q, g, ¢') can be computed from I
by substituting into I, the appropriate initial (entry) values of all the variables
that are also output variables of ¢’. That is, if y; is the jth output variable of ¢’
and S; = y; is a shared variable that appears in [, then the value of .S; must
be set to

SZ' = hj (l‘gl, uq/).

If I, # wplq,0,q'), then we will split the configuration ¢ into two sub-
configurations ¢; and ¢» by partitioning the invariant I, (and associating with
each of the sub-configurations the corresponding invariant) as

Iy, = 1 Nwpl(q, 2, ')
Iy, = Ig A —~wplg,o,q).

Clearly, the dynamics of and the transitions leaving and entering the configu-
rations ¢q; and g2 are the same as for ¢, except that the transition (¢a2,,¢') is
not permitted or is impossible (because of the invariant violation). Also the
transition from ¢; to ¢z is dynamic with the guard —wp(q, o, ¢’), and from ¢ to
q1 with guard wp(q, o, ¢').

Clearly, ¢1 is legal in the sense that from it the transition to the legal config-
uration ¢’ can be forced, while ¢5 is not legal. From ¢;, the dynamic transitions
in DTy(q1,Qp) and the dynamic transition (q1, 7wp(q, o, ¢'), q2) are illegal and
must not be permitted. To prevent these transitions from taking place in a
minimally restrictive manner, o must be forced just before any one of them can
actually take place. In other words, ¢ must be forced just before I, becomes
false. To find the condition under which o needs to be forced, we note that, by
our assumption on invariants, I,, will have the conjunctive normal form

Iy = (PuVo VP A A(Pra Ve VP, ),

where P;;=(5;; > Ci;) or P;;=(S;; < Cj;), representing semi-closed intervals.
Therefore, we would like to force o exactly on the boundary. Recall that, by
assumption, the shared variables S; are rate-bounded; that is, S;€[r;*, Y],
where 7% and ;¥ are the lower and upper bounds, respectively. Thus, for a
predicate P = (S; < (), we define

(S; > Cy) if Y >0

false otherwise,

eritical(P) = {

Similarly, we can define critical(P) for P = (S; > C;). For conjunction of two
predicates P = Py A Pa, critical(P) = critical(Py) V eritical(Py), and for dis-
junction of two predicates P = PV Py, critical(P) = critical (Py) Aeritical (Pz).
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transition or via a dynamic transition. Since all event transitions are at the dis-
posal of the controller, prevention of entry to the illegal set via event transitions
is a trivial matter (they simply must not be triggered). Therefore, in our control
synthesis we shall focus our attention on dynamic transitions. Intuitively, the
minimally restrictive legal controller must take action, by forcing the CHM from
the current configuration to some other legal configuration, just in time (but
as late as possible) to prevent a dynamic transition from leading the system to
an illegal configuration. Clearly, entry to a configuration which is legal but at
which an inescapable (unpreventable) dynamic transition to an illegal configu-
ration is possible, must itself be deemed technically illegal and avoided by the
controller. Thus the controller synthesis algorithm that we present below, will
iterate through the (still) legal configurations and examine whether it is possi-
ble to prevent a dynamic transition from leading to an illegal configuration. In
doing so, it will frequently be necessary to “split” configurations by partitioning
their invariants into their legal and illegal parts.

To streamline the ensuing analysis, we shall assume that the invariants of all
legal configurations are expressed in conjunctive normal form

I'= (Vo NI )A AT Ve N, ),

where I;;=(S;; > Cy;) or I;;=(S5;; < Cj;). Similarly, all the guards are in
conjunctive normal form

G = (Gll\/...\/Glll)/\.../\(Gml\/...\/Gmlm),

where G;;=(S;; > Cy;) or G;;=(Si; < C;;), representing some semi-open intervals?®.
Without loss of generality, we shall assume that the invariant is violated if and
only if one or more of the guards is true. (Otherwise, we can conjoin with the
invariant the negation of the guards.)

Let us consider a legal configuration q. As discussed earlier, we assume that
transitions leaving ¢ are either dynamic transitions or event transitions, and can
lead to either legal or illegal configurations. Therefore, we classify the transitions
into four types: (1) Legal event transitions that lead to legal configurations:

ETy(q,Q0) = {(g,2,4") - q = ¢ ANqg & Qp}. (2) Tllegal event transitions that

lead to illegal configurations: ETy(q,@s) = {(¢,0,¢') : ¢ NN = Qs }.
(3) Legal dynamic transitions that lead to legal configurations: DTy (¢, Q) =

{(¢,G,q¢) : ¢ G, A & Qut. (4) Tllegal dynamic transitions that lead to illegal

configurations: DTy(q, Q) = {(¢, G, ¢') : ¢ N g N €Qp}.

Since transitions in ET, (¢, Qp) can be prevented by simply not being trig-
gered, we need not discuss them further. If D7}(q, Q) = @, then no dynamic
transition from ¢ leads to an illegal configuration and hence there is no need to
split ¢. Otherwise, if DT(q, Q) # 0, we may need to split ¢ as discussed below.
Let us consider the different cases.

Case 1. DT,(q,Qp) =0

Since DTy(q,Qs) = 0, the only way to prevent transitions in DT} (g, Q)

from taking place, is for the controller to trigger an event transition (¢q,c,¢’) €

4More generally, we only require that guards leading to illegal configurations be described
by semi-open intervals.



are typically given as safety specifications, where a prescribed set of unwanted
behaviors or configurations is to be avoided, or liveness specifications, where a
prescribed set of termination conditions is to be met, or both.

For general hybrid systems, specifications can, in principle, be of a very com-
plex nature incorporating both dynamic requirements and the logical (discrete)
aspects.

In the present paper we consider only safety specifications given as a set of
llegal configurations

Qv ={q =< q}l,qi, gl >€ Q' x Q% x ... x Q" : q is illegal}

that the system is not permitted to visit.

Our goal is to synthesize a controller that guarantees satisfaction of the
above stated configuration-based safety requirement. A controller that achieves
the specification is then said to be legal.

In this paper, we shall consider only restricted interaction between the con-
troller and the CHM by permitting the controller to communicate with the CHM
only through input/output-event synchronization. Thus, we make the following
assumption.

Assumption 2 C can only control the CHM by means of input/output-event
synchronization. That is, C' can only control event transitions in the CHM.

Thus, the controller is assumed not to generate any output signals that may
affect the CHM.

We shall assume further that C' can control all the event transitions in the
CHM. That is, all the (externally triggered) event transitions are available to
the controller. This leads to no essential loss of generality because, when some
of the events are uncontrollable, we can use the methods developed in supervi-
sory control of discrete-event systems [22] [23] to deal with uncontrollable event
transitions. We shall elaborate on this issue elsewhere.

A legal controller C' is said to be less restrictive than another legal controller
C" if every execution permitted by C” is also permitted by C' (a formal definition
will be given in the next subsection). A legal controller is said to be minimally
restrictive if it is less restrictive than any legal controller.

With a slight modification of the formalism that we shall present here, two or
more controllers can be combined by parallel composition to form a composite
controller. An important characteristic of a minimally restrictive controller is
the fact that when it is combined with any other controller (legal or not), that
is possibly designed for satisfying some other specifications, such as liveness or
optimality, the combined controller is guaranteed to be safe (i.e., legal). Hence,
no further verification of safety will be needed. Furthermore, the minimally
restrictive controller will intervene with the action of the other controller only
minimally; that is, when 1t is absolutely necessary to do so in order to guarantee
the safety of the system.

4.2 Control synthesis

As stated, our control objective is to ensure that the system CHM never enter
the set of illegal configurations Q. Such entry can occur either via an event



However, since for the transition to take place the guard must be true when the
event 1s triggered, a guarded event transition can be decomposed into

G a
¢ g =,

where ¢ has been partitioned into ¢; and g3, with [,» = [;A=G and 1,2 = [;AG.
It follows that a guarded event transition can be treated as a combination of a
dynamic and an event transition.

Thus, transitions in CHMs can be classified into two types: (1) dynamic
transitions, that are labeled by guards only, and (2) event transitions, that are
labeled by events.

The transitions are considered to occur instantaneously and concurrent ver-
tex changes in parallel components occur exactly at the same instant (even when
constituting a logically triggered finite chain of transitions).

Remark 1 Based on the above definition, a CHM can be viewed as the same
object as an EHM:

CHM = (QaEaD’I’E’(qO’xO))

where
Q= Q' x Q% x ... x Q",
Y= Tux?u..uxnr,
D= {(xqayqauqafqahq) - q =< qillanZQa""aqznn >€ Ql X Q2 X ... X Qn}
combines all the dynamics of q‘gj,j =1,2,...,n,
I = {Iqlll /\1%22 A "'/\qunn < qi11’qi22’ ...,qlnn >c Ql X Q2 X X QY
E is defined as above,and

(QOaxO) = (< Qéana ""qg >, ($é’$g’ ,l‘g))

Therefore, we can define an execution of a CHM wn the same way as that of an

EHM.

4 Control

4.1 Specifications

As stated in the previous section, a CHM can interact with its environment in
two ways: (1) by signal transmission (shared variables), and (2) by input/output-
event synchronization. Formally, a Controller of a CHM is a hybrid machine C'
that runs in parallel with the CHM. The resultant system

CHM||C

is called the controlled or closed loop system. The objective of control is to force
the controlled system to satisfy a prescribed set of behavioral specifications.
For conventional (continuous) dynamical systems, control specification might
consist of the requirement of stability, robustness, disturbance rejection, optimal-
ity and the like. For discrete-event systems, specifications of required behavior



(i.e., o is defined at the current vertex with a true guard) will execute ¢ (and
its associated transition) concurrently with the occurrence of @. An output-
event can be generated by at most one EHM. Notice that input-events do not
synchronize among themselves. Notice further that this formalism is a special
case of the prioritized synchronous composition formalism [11], where each event
is in the priority set of at most one parallel component.

By introducing the shared variables S, we can now define invariants and
guards formally as boolean combinations of inequalities of the form (called
atomic formulas)

S; > C; or S; < (i,

where S; is a shared variable and C} is a real constant.
To describe the behavior of

CHM = EHMY||EHM?||...||EHM™,
we define a configuration of the CHM to be
4 =<qi, 4, qf >EQ" xQ? x .. x Q"

where ()7 is the set of vertices of EH M7 (components of the EHMs are super-
scripted).

When all the elements of ¢ are specified, we call ¢ a full configuration. When
only some of the elements of ¢ are specified, we call ¢ a partial configuration and
we mean that an unspecified element can be any possible vertex of the respective
EHM. For example, < ,qi, ..., g7 > is interpreted as the set

< QZ'ZQa aQZnn >= {< Qillaqu aQZnn > qgl € Ql}

of full configurations. Thus, a partial configuration is a compact description of
a set of (full) configurations.
A transition

l
< ql'll,qi, ’qlnn >—< qz'l’laqz'z’Qa aqzn;n >

of a CHM is a triple where < ql»ll, ql»22, ., qp. > is the source configuration, <
ql»l,l,qiz,Q, -, qyr > the target configuration, and [ the label that triggers the
transition. [ can be either an event or a guard (becoming true). Thus, if { = ¢
is an event (generated by the environment), then either q‘g,j = q‘gj if o 1s not

) is a transition in E7.
7

On the other hand, if I = G is a guard, then there must exists a transition
(¢, G — U’,qg’,jn,xgﬁ ) in some EHM™ and for j # m, either q‘gg = q‘gj if o/

active at q‘gv, or q‘g,v 1s such that (q‘gv,a — U’,q‘g,v,xoj
3 3 3 3
;

: J J o Jo 7o 0y RSN
is not defined at Gi;s OF G118 such that (qij, o -0 s T ) is a transition in
i
7

7.
Recall that our model also allow guarded event transitions of the form

G/\al
qg—q.



e (qo,zg) denote the initialization condition: ¢p is the initial vertex and
g (to) = @o.

For the EHM to be well-defined, we require that the vertices be completely
guarded with each possible invariant violation. That is; every invariant violation
implies that some guard becomes true and the associated transition is input-
event-free in the sense that it has the form (¢, G — o/, ¢/, xg,). (Tt is, in principle,
permitted that more than one guard become true at the same instant. In this
case the transition that will actually take place is resolved nondeterministically.)
Note that we do not require the converse to be true. That is, a transition can
be triggered even if the invariant is not violated. We do require that, upon
entry to ¢’, the invariant I,» not be violated. It is however possible that, upon
entry to ¢’, one of the guards at ¢’ is already true. In this case, the EHM
will immediately exit ¢’ and go to the vertex specified by the guards. Such a
transition is considered instantaneous. Naturally, we only allow finite chains
of such instantaneous transitions. That is; the guards must be such that no
sequence of instantaneous transitions will form a loop.

In this paper we will study a restrictive class of hybrid machines by making
the following assumption.

Assumption 1 The dynamics described by f, and hy has the following proper-
ties: (1) hq(xq,uq) is a linear function; and (2) fq(xq, ug) is bounded by a lower
limat k’é and an upper limit k{{, that 1s, fy(xq,uq) € [ky, k’g]

An execution of the EHM is a sequence

€1ty e2,t €s,t3
qo — q1 —§QQ—>...

where ¢e; 1s the ¢th transition and ¢; 1s the time when the ith transition takes
place.

3.2 Composite hybrid machine

A composite hybrid machine consists of several elementary hybrid machines
running in parallel:

CHM = EHMY||EHM?||...||EHM".

Interaction between EHMs is achieved by means of signal transmission (shared
variables) and input/output-event synchronization (message passing) as described
below.

Shared variables consist of output signals from all EHMs as well as signals
received from the environment. They are shared by all EHMs in the sense that
they are accessible to all EHMs. A shared variable can be the output of at most
one EHM. If the EHM of the output variable does not update the variable, its
value will remain unchanged. The set of shared variables defines a signal space
S = [Sla SZa ce Sm]

Transitions are synchronized by an input/output synchronization formalism.
That 1s, if an output-event 7 is either generated by one of the EHMs or received
from the environment, then all EHMs for which o is an active transition label



3 Hybrid Machines

We first introduce a modeling formalism for a class of hybrid systems which we
call hybrid machines and which are a special case of hierarchical hybrid machines
to be discussed elsewhere [14]. Hybrid machines are similar in spirit to hybrid
automata as introduced in [3].

3.1

Elementary hybrid machines

An elementary hybrid machine is denoted by

EHM = (QaEaDaIaEa (90,1‘0)).

The elements of EHM are as follows.

e () is a finite set of vertices.

e Y is a finite set of event labels. An event is an input event, denoted by

o (underline), if it is received by the EHM from its environment; and an
output event, denoted by 7 (overline), if it is generated by the EHM and
transmitted to the environment.

D ={d, = (2q,Yq, ug, fq, hq) : ¢ € Q} is the dynamics of the EHM, where
dg, the dynamics at the vertex ¢, is given by:

tg = folg, ug),
Yg = hq(zq, uq),

with x4, ug, and yg, respectively, the state, input, and output variables
of appropriate dimensions. f; is a Lipschitz continuous function and h, a
continuous function. (A vertex need not have dynamics associated with it,
that is dy = 0, in which case we say that the vertex is static.)

I={I,:q € Q}is a set of invariants. I, represents conditions under
which the EHM is permitted to reside at ¢. A formal definition of I, will
be given in the next subsection.

E={(q,GAac— o', ¢, xg,) 1q,¢" € Q}is aset of edges (transition-paths),
where ¢ is the exiting vertex, ¢’ the entering vertex, o the input-event, o’/
the output-event, GG the guard to be formally defined in the next subsection,
and xg, the initialization value for x4, upon entry to ¢'.

(¢, GhNa — ¢, xg,) is interpreted as follows: If G 1s true and the event
o Is received as an input, then the transition to ¢’ takes place with the

assignment of the initial condition x4 (to) = 1‘2/ (here ¢y denotes the time

at which the vertex ¢’ is entered). The output-event o’ is transmitted at
the same time. If o is absent, then the transition takes place immediately
upon G become true; if ¢/ is absent, then no output-event is transmitted;
if G 1s absent, the guard is always true and the transition will be triggered
by the input-event o; and if xg, is absent, then the initial condition is
inherited from «, (assuming z, and z, represent the same physical object
and hence are of the same dimension).



some substantial new insight and a sense of new research direction.

2 Design Philosophy

Intuitively, a controller for legal behavior of a hybrid system is minimally re-
strictive if it never takes action unless constraint violation becomes imminent.
When the latter happens, the controller is expected do no more than prevent the
system from becoming “illegal”. This is a familiar setting in the discrete-event
control literature since, there, the role of the controller has traditionally been
viewed as that of a supervisor that can only intervene in the system’s activ-
ity by event disablement [22] [23]. Thus, a minimally restrictive supervisor of a
discrete-event system is one that disables events only whenever their enablement
would permit the system to violate the specification.

It is not difficult to see that a natural candidate for a “template” of a mini-
mally restrictive supervisor, is a system whose range of possible behaviors coin-
cides with the set of behaviors permitted by the specification. The concurrent
execution of the controlled system and such a supervisor, in the sense that events
are permitted to occur in the controlled system whenever they are possible in
the controller template, would then constrain the system to satisfy the specifi-
cation exactly. We shall then say that we have employed the specification as a
candidate implementation. If all the events that are possible in the system but
not permitted by the candidate supervisor can actually be disabled, we say that
the specification is implementable or (when the specification is given as a legal
language) controllable [22]. Generally, a specification may not be implementable
because not all the events can be disabled.

The standard approach to supervisory controller synthesis can then be in-
terpreted as an iterative procedure where, starting with the specification as a
candidate implementation, at each stage of the iteration the specification is tight-
ened so as to exclude behaviors that cannot be prevented from becoming illegal
by instantaneous disablement of events [12] [13]. The sub-specification thus ob-
tained, is then used as a new candidate implementation. When the procedure
converges in a finite number of steps (a fact guaranteed in case the system is a
finite-automaton and the specification a regular-language), the result is either
an empty specification (meaning that a legal supervisor does not exist) or a
minimally restrictive implementable sub-specification.

In the present paper we shall employ the same design philosophy for the
synthesis of minimally restrictive controllers of hybrid systems. While the ap-
proach is, in principle, very general and can be employed for a wide range of
specifications, we confine our attention in the present paper to a restricted class
of safety specifications. In particular, we shall consider only the problem where
the controller 1s required to prevent the system from entering a specified set of
llegal configurations. While we shall not show this explicitly in this paper, a
wide class of specifications can be transformed into the setting considered here.

We shall restrict our attention further to bounded-rate hybrid systems.That
18, we consider systems in which the rates of the dynamic variables are bounded
by finite constants. It is not difficult to show, that even in this simple case the
question of existence of a controller may be computationally rather tricky.



1 Introduction

Various definitions have been proposed in the literature to capture the intuitive
idea that hybrid systems are dynamic systems in which discrete and continuous
behaviors coexist and interact [3] [4] [6] [7] [17] [19]. Broadly speaking, they
are systems in which change occurs both in response to events that take place
discretely, asynchronously and sometimes nondeterministically, and in response
to dynamics that represents (causal) evolution as described by differential or dif-
ference equations of time. Thus, most physical systems that can be represented
by formal behavior models are hybrid in nature.

In recent years there has been a rapidly growing interest in the computer-
science community in modeling, analysis, formal specification and verification
of hybrid systems (see, e.g. [4] [21]). This interest evolved progressively from
logical systems, through “logically-timed” temporal systems [2] [16] to real-time
systems modeled as timed-automata and, most recently, to a restricted class of
hybrid systems called hybrid automata [3]. Thus, the computer science viewpoint
of hybrid systems can be characterized as one of discrete programs embedded in
an “analog” environment.

In parallel, there has been growing interest in hybrid-systems in the control-
theory community, where traditionally systems have been viewed as “purely”
dynamic systems that are modeled by differential or difference equations [5]
[6] [7]. More recently, control of purely discrete systems, modeled as discrete-
event systems, also received attention in the literature [22] [23] [15] [16]. The
growing realization that neither the purely discrete nor the purely continuous
frameworks are adequate for describing many physical systems, has been an in-
creasing driving force to focus attention on hybrid systems. Contrary to the
computer science viewpoint that focuses interest in hybrid systems on issues of
analysis and verification [9] [18] [20], the control-theory viewpoint is to focus
its interest on issues of design. Typical hybrid systems interact with the envi-
ronment both by sharing signals (i.e., by transmission of input/output data),
and by event synchronization (through which the system is reconfigured and its
structure modified). Control of hybrid systems can therefore be achieved by em-
ploying both interaction mechanisms simultaneously. Yet, while this flexibility
adds significantly to the potential control capabilities, it clearly makes the prob-
lem of design much more difficult. Indeed, in view of the obvious complexity
of hybrid control, even the question of what are tractable and achievable design
objectives, is far from easy to resolve.

In the present paper we examine the control problem for a restricted class of
hybrid systems that we call composite hybrid machines (CHMs). We confine our
attention to bounded rate CHMs, in which the dynamic rates are bounded by
lower and upper constant bounds. Control is confined to event synchronization;
that is, the controller can affect the system’s behavior only by discrete com-
mands. These hybrid systems are a generalization of timed automata, which
in turn generalize discrete event systems by introducing real-time constraints.
For such systems it is natural to specify the cotrol objective in terms of safety
constraints and liveness constraints, much in the spirit of the control of discrete-
event systems. Indeed, this generalization is on one hand simple enough to be
computationally tractable, and on the other hand, complex enough to provide
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Abstract

We examine a class of hybrid systems which we call Composite Hybrid
Machines (CHMs) that consist of the concurrent (and partially synchro-
nized) operation of Elementary Hybrid Machines (EHMs).

Legal behavior, specified by a set of illegal configurations that the CHM
may not enter, is to be achieved by the concurrent operation of the CHM
with a suitably designed legal controller. In the present paper we focus
on the problem of synthesizing a legal controller, whenever such a con-
troller exists. More specifically, we address the problem of synthesizing
the minimally restrictive legal controller.

A controller is minimally restrictive if when composed to operate con-
currently with another legal controller, it will never interfere with the
operation of the other controller and, therefore, can be composed to oper-
ate concurrently with any other controller that may be designed to achieve
liveness specifications or optimality requirements without the need to rein-
vestigate or reverify legality of the composite controller.

We confine our attention to a special class of CHMs where system
dynamics is rate-limited and legal guards are conjunctions or disjunctions
of atomic formulas in the dynamic variables (of the type z < g or > x9).
We present an algorithm for synthesis of the minimally restrictive legal
controller.

We demonstrate our approach by synthesizing a minimally restrictive
controller for a steam boiler (the verification of which recently received a

great deal of attention).
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